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�� INSTRUCTIONAL REVIEW

The diagnostic and prognostic value of 
artificial intelligence and artificial neural 
networks in spinal surgery
A NARRATIVE REVIEW

In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular 
subset of ML, have been adopted by various areas of healthcare. A number of diagnos-
tic and prognostic algorithms have been designed and implemented across a range of 
orthopaedic sub-specialties to date, with many positive results. However, the methodol-
ogy of many of these studies is flawed, and few compare the use of ML with the current 
approach in clinical practice. Spinal surgery has advanced rapidly over the past three 
decades, particularly in the areas of implant technology, advanced surgical techniques, 
biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. 
Inevitably, spinal surgeons will wish to incorporate ML into their practice should models 
prove effective in diagnostic or prognostic terms. The purpose of this article is to review 
published studies that describe the application of neural networks to spinal surgery and 
which actively compare ANN models to contemporary clinical standards allowing evalu-
ation of their efficacy, accuracy, and relatability. It also explores some of the limitations 
of the technology, which act to constrain the widespread adoption of neural networks 
for diagnostic and prognostic use in spinal care. Finally, it describes the necessary con-
siderations should institutions wish to incorporate ANNs into their practices. In doing 
so, the aim of this review is to provide a practical approach for spinal surgeons to un-
derstand the relevant aspects of neural networks.

Cite this article: Bone Joint J 2021;103-B(9):1442–1448.

Introduction
Artificial intelligence (AI) is a term originally 
coined by Dr John McCarthy.1 It describes the 
inevitable progression of the functionality of 
computers that learn to perform tasks by pattern 
recognition, with minimal or no human input. 
Although similar, there are notable differences 
between AI and machine learning (ML). AI refers 
to a broad class of technological systems that are 
designed to simulate human behaviour.2 The appli-
cation of AI is evident across various industries, 
including image recognition (automated photo 
tagging on social media), speech-to-text (smart-
phone dictation), natural language processing 
(chatbots), recommendation systems (personal-
ized advertisements), video classification (secu-
rity cameras), and tabular systems (email spam 
filters).2-4 The scope of AI is therefore vast. ML and 
deep learning (DL) are the two main subsets of AI 
(Figure 1). The premise of ML is that an external 
user or operator provides data to a machine or 
model, and allows that machine or model to learn 

and design algorithms for novel application.2,3 
ML has a narrower scope than AI, and can only 
perform tasks for which it is trained. This can be 
achieved through three different forms of training: 
supervised, unsupervised, and reinforcement.
ML models. The three most commonly employed 
ML models are logistic regression (LR), support 
vector machines (SVM), and artificial neural net-
works (ANNs), due to their ease of design and 
implementation, as well as their recognized pre-
dictive ability.2,3,5 The most common method of 
distinguishing between these three models is their 
origin. LR was designed and developed by stat-
isticians, while the latter two were developed by 
computer scientists concerned with novel ML al-
gorithms and models. The premise of LR is the 
examination of the relationship between variables, 
referred to as inputs, and an outcome which can be 
continuous or categorical, referred to as an output.6 
LR can be designed in a backward (variables and 
outcome known) or forward (outcome unknown) 
selection manner.7 Stepwise LR is a combination 
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of backward and forward selection, in which variables are auto-
matically selected to best fit the regression model.

SVMs are supervised linear models that function by finding 
an optimal separation line (referred to as a hyperplane) to 
differentiate between two classes, or two sets of data.5 An 
optimal hyperplane is one defined as having maximum 
margin. Margin is calculated by taking the points closest to 
the hyperplane, known as support vectors, from each respec-
tive dataset, and calculating the distance from the hyperplane 
to support vectors. Important parameters in SVM models are 
“C” and “γ”. C allows for control of error within the model. 
γ indicates the degree of spread influence of the support 
vectors.5 Support vectors located close to the boundary are 
reported to have a high γ, while those far from the boundary 
have a low γ. High γ is typically represented by a line with a 
large degree of curvature and is often inferred as a model with 
a high degree of bias.

ANNs are computer models designed to mimic biological 
neural networks.2-4 Their structure consists of multiple inter-
connected “nodes” arranged in three layers: input, hidden, 
and output.2 Each node in the input layer represents an input 
variable. There is typically one node in the output layer, which 
represents the outcome of interest. Nodes in the hidden layer 
allow ANNs to model complex relationships between the input 
nodes and output node. Nodes in respective layers are connected 
by connection weights, referred to as arcs. These connection 
weights represent the relationship between variables, similar 
to coefficients in a LR model. ANNs function to learn these 
relationships and to develop prediction models by learning and 
training.2 Although ANNs might appear to be merely automated 
LR models, this is not the case as the training algorithms are 
distinctly different. The most common method of ANN training 
is by backpropagation, which instructs the machine to adjust 
its internal parameters, allowing computation of the output of 

each layer of “neurones” comparing it to the previous one.2,6,7 
These intricate learned patterns, once set in motion, make ANN 
models largely autonomous. DL models are simply an extension 
of this concept, and serve to understand the complex relation-
ship between larger datasets by transformation and extraction of 
a greater amount of data through additional nodes in the hidden 
layer.3,4 The various types of ANNs are shown in Figure 2. The 
individual functionality and scope of each ANN is beyond the 
scope of this article.
Orthopaedic applications of AI. AI has shown great potential 
in the fields of image recognition, preoperative risk assessment, 
and clinical decision-making. A literature review by Cabitza et 
al8 highlights the work that has been done to date. They ana-
lyzed 70 studies which had implemented ML in the field of or-
thopaedics over the previous 20 years, including the detection 
of spinal pathology, the identification of anterior and posterior 
cruciate ligaments, fractures, and the classification of osteoar-
thritis and cartilage imaging.

Although a number of studies have shown that ML and neural 
network applications are potentially effective in orthopaedics, 
including spinal surgery, few have actively compared those 
models with current diagnosticprognostic standard in clinical 
practice. To address this in terms of spinal care, the following 
sections review the literature on the application of ANN to 
spinal surgery, comparing the models described to the current 
diagnostic and prognostic standards to evaluate their efficacy, 
accuracy, and relatability. Additionally, this review aims to 
delineate certain limitations of ANN models and discuss how 
institutions can begin the process of introducing these models 
into clinical practice.
Diagnostic validity of ML in spinal surgery. ML shows 
promise in analyzing and identifying abnormalities in radi-
ological images. A number of recently published studies de-
scribe the development of ML algorithms for analyzing spinal 
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images and comparing them with the analysis of expert radi-
ologists and surgeons.9-13

Pan et al9 assessed the ability of two Mask R-CNN (convo-
lutional neural networks, a form of ANN) models to detect, 
segment, and measure the Cobb angles of 248 chest radiographs 
in patients with lung cancer and compared the results with those 
of two experienced radiologists. Throughout this study, the 
CNN models were referred to as the computer-aided method 
(CAM), and the radiologists were referred to as the manual 
method. For the radiologists, the intraclass correlation coef-
ficients (ICCs) of intra- and interobserver reliability analysis 
were 0.941 and 0.887 with a mean absolute difference (MAD) 
between the two radiologists of < 3.5°. The MAD provides an 
indication of the mean variance or discrepancy between the 
values reported by each radiologist. The ICC between CAM 
and the manual method was 0.854 with a mean absolute differ-
ence of 3.32°. In a separate comparison between radiologist 1 
and CAM, the ICC was 0.868 (95% confidence interval (CI) 
0.819 to 0.902) with a MAD of 3.33°. The ICC for radiologist 2 
and CAM was 0.812 (95% CI 0.723 to 0.868). The sensitivity, 
specificity, and accuracy for the CAM were 89.59%, 70.37%, 
and 87.50% respectively, showing that the CAM had the poten-
tial to diagnose scoliosis.

Zhang et al10 trained a deep neural network (DNN, a DL 
model), to measure the Cobb angle in scoliosis patients from 
275 PA radiographs of a spine model, with the aim of reducing 
variability of measurement. The results were compared to the 
manual measurements of 105 radiographs (40 model and 65 in 
vivo films) made by an experienced spinal deformity surgeon. 
The ICCs for intraobserver analysis of the model radiographs 
ranged from 0.937 to 0.986, with a MAD of < 3°. For the patient 
radiographs, the ICCs ranged from 0.901 to 0.953 with an MAD 
of 4.5°. Interobserver ICCs were 0.870 to 0.980 for the model 
films (MAD: 2.9°) and 0.862 to 0.889 for the in vivo films 
(MAD: 5.1°). Automatic measurements using the DNN were 
compared to manual measurements made by two examiners, 
one a spinal clinician with 21 years’ experience in a scoliosis 
clinic and the other a software engineer with no previous radio-
logical experience. The ICC for the model films was > 0.91 
(95% CI 0.815 to 0.962) and for in vivo radiographs 0.771 to 
0.835 (95% CI 0.602 to 0.914). The authors concluded that the 
automatic method of Cobb angle measurement showed good 
agreement with the manual measurement method and reduced 
variability of measurement, but future systems would need to 
include in vivo radiographs in the DNN training set to allow the 
system to measure Cobb angles accurately.

In 2017, Jamaludin et al11 described a system using a convo-
lutional neural network (CNN) to grade lumbar intervertebral 
discs and vertebral bodies for signs of degeneration using 
12,018 MRI images from 2009 patients collected during the 
Genodisc Project. They assessed Pfirrmann grade14 of each 
disc, disc narrowing, spondylolisthesis, central canal stenosis, 
and the presence of endplate changes. The performance of the 
model was compared with the intraobserver class mean accu-
racy of an expert spinal radiologist. The model produced an 
accuracy of 95.6% for labelling and disc detection, only failing 
on images of inadequate quality. The researchers found that 
the difference on average between the model and the intrarater 

(radiologist) agreement was around 0.4%. Such results indicate 
that the model is a close automated analogue of the radiologist 
in terms of the ability to analyze some features of MRI scans. 
Although the model could produce predictions of pathological 
gradings comparable to manual interpretation, it tended towards 
predicting more abnormal/pathological findings than the radiol-
ogist. Advantages of this “flaw” could be that a screening model 
is created providing a safety net for review by the radiologist. 
The authors concluded that automation of radiological grading 
was on par with human performance.

An automated CNN was developed by Weng et al12 for 
measuring sagittal vertebral axis (SVA) on 990 standing whole 
spine lateral radiographs. The software, ResUNet (the name 
given to the CNN model), was developed for the detection of 
degenerative changes and deformities in the vertebral column. 
Following training of the software, the ICC of the inter-rater 
reliability of human experts and ResUNet was 0.946 to 0.993, 
indicating excellent consistency and reliability in detection and 
therefore its use in clinical settings.

Korez et al13 designed and employed two DL models, Reti-
neNet and U-Net, for the fully automated measurement of 
sagittal spinopelvic balance from radiographs of the spine, 
comparing the results with manual measurements. They 
assessed sacral slope, pelvic tilt, spinal tilt, pelvic incidence, 
and spinosacral angle. The MAD between the DL results and the 
manual measurements was 3.9° (1.2° to 5.5°) and the correla-
tion coefficients ranged from 0.71 to 0.95. They concluded that 
apart from a few outlier images, the DL tool was equivalent to 
manual measurement. A summary of findings in all four studies 
are outlined in Table I.

Despite some limitations, many of the models developed 
show promise as diagnostic aids for surgeons and radiolo-
gists. These studies indicate that neural network models can 
provide a rapid and objective radiological analysis in the clin-
ical setting, including the possible automation of diagnosis 
from plain radiographs that would reduce time to diagnosis. 
For example, the ResUNet algorithm demonstrated an infer-
ence time for one radiograph of 0.2 s, demonstrating the rapid 
screening capacity for large datasets in the clinical setting,12 
with potential beneficial repercussions in terms of optimizing 
future treatment strategies.
Prognostic utility of AI in spinal surgery. Predictive mod-
els, such as multivariate LR, can assist diagnostically in spinal 
conditions and can contribute to the optimization of treatment 
strategies for patients.10 ML models, particularly ANNs, have 
the potential to add to, or even eventually replace, the prognos-
tic use of LR for some aspects of spinal surgery including the 
prediction of postoperative complications, surgical satisfaction, 
rehabilitation needs, and the overall pathway of patient care.

For this review, seven studies were identified that investi-
gated the predictive validity of ANN compared to LR across 
a range of spinal pathologies, including disc herniation and 
recurrence, lumbar spinal stenosis, spinal fusion, and the 
treatment of adult spinal deformity.15–21 The prognostic focus 
included risk analysis for postoperative complications and 
patient satisfaction for both surgical outcomes and the process 
of patient care. All studies found ANN to be comparable to 
LR in predictive performance, with most results indicating 
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that ANN outperforms LR in at least one, if not all, perfor-
mance measures.

Azimi et al15 reported a risk analysis prediction model in 402 
patients which aimed to determine whether ANN or LR was 
more accurate at predicting recurrence of a lumbar disc herni-
ation. ANN outperformed LR with an AUC of 0.84 compared 
to 0.76 and had a greater accuracy than LR (94.1% vs 86.4%). 
Additionally, ANN outperformed LR in terms of specificity 
(46% vs 34%), positive predictive value (PPV) (69% vs 65%), 
and negative predictive value (NPV) (88% vs 82%). These 
results indicate that both LR and ANN can be used to predict 
recurrent lumbar disc herniation, and that ANN is potentially 
the more reliable model.

A group from Mount Sinai Hospital in New York, USA, 
have published three studies that compare ANN with LR using 
risk analysis based on data from the National Surgical Quality 
Improvement Program (NSQIP) database.16–18 The first was 
a comparative risk analysis of postoperative complications 
after anterior cervical discectomy and fusion (ACDF).16 The 
authors identified 20,879 patients who had an ACDF between 
2010 and 2014. The ANN models were trained to predict 
the occurrence of venous thromboembolism (VTE), cardiac 
complications, wound complications, and mortality. ANN 
models were compared with American Society of Anesthe-
siologists22 (ASA) physical status of the patients and their 
performance was represented as the area under the receiver 
operating characteristic (AUROC) curve, a popular measure 
of how well a model can predict the primary outcome. The 
ASA physical status classifiers were consistently outper-
formed by both LR and ANN. ANN performed better than 
LR when predicting complications with an AUC of 0.772 
(LR 0.759) for cardiac complications, 0.656 (LR 0.639) for 
VTE, 0.518 (LR 0.501) for wound complications, and 0.979 
(LR 0.974) for mortality. The findings of the study showed 
that both ANN and LR have the ability to accurately predict 
postoperative complications, with ANN proving to be more 
accurate than LR for postoperative VTE, wound complica-
tions, and mortality. Interestingly, Arvind et al16 also reported 
findings for a SVM model. Similarly, ANN outperformed 
the SVM model in terms of predicting cardiac complications 

(AUC 0.772 vs 0.559), VTE (AUC 0.656 vs 0.430), wound 
complications (AUC 0.518 vs 0.422), and mortality (AUC 
0.979 vs 0.214).

Their second study reported a risk analysis of postoperative 
complications in posterior lumbar fusion (PLF) using both ANN 
and LR.17 A total of 22,629 patients were included in the dataset. 
Both ANN and LR outperformed ASA for all complications. LR 
outperformed ANN in predicting VTE (AUC 0.588 vs 0.567), 
wound complications (AUC 0.613 vs 0.606), and mortality 
(AUC 0.703 vs 0.680). ANN outperformed LR for predicting 
cardiac complications (AUC 0.710 vs 0.657). ANN was also 
found to be more sensitive than LR for detecting postoperative 
wound complications and mortality.

The third risk analysis study examined 4,073 patients under-
going correction of an adult spinal deformity (ASD).18 LR and 
ANN outperformed ASA for all complications including VTE, 
cardiac complications, wound complications, and mortality. 
ANN outperformed LR in predicting cardiac (AUC 0.768), 
wound complications (AUC 0.606), and mortality (0.844). LR 
outperformed ANN in VTE predictions (AUC 0.547). ANN 
was once again more sensitive than LR for predicting wound 
complications and mortality.

These three linked studies highlight how ML models such as 
LR and ANN can be used to accurately predict postoperative 
outcomes in spinal surgery. ANN was consistently more sensi-
tive than LR, an advantage in terms of clinical decision-making.

ML has not only been used to predict surgical outcome. 
LR and ANN have also been used to predict satisfaction 
with surgical outcomes and satisfaction with overall patient 
care. In 2014, Azimi et al19 used an ANN to predict patient 
satisfaction after surgery for lumbar spinal stenosis in 168 
patients. They compared the performance of LR to an ANN, 
showing that the ANN outperformed LR with an AUC of 
0.80 compared with 0.76. Also, the ANN had a greater accu-
racy rate when compared with LR: 96.9% versus 88.4%. 
Similar to the previously mentioned study by Azimi et al,19 
ANN outperformed LR in terms of specificity (41% vs 34%), 
PPV (69% vs 63%), and NPV (89% vs 82%). These figures 
show that ANN has the ability to predict surgical satisfaction  
in patients postoperatively.

Table I. Summary of comparative diagnostic studies.

Author (year) Measurement Comparison ICC* (95% CI)

Jamaludin et al (2017)11 Pfirrmann grade Radiologist vs CNN 0.88 (N/R)

Disc narrowing 0.89 (N/R)

Zhang et al (2017)10 Cobb angle DNN vs radiologist 0.9 (0.811 to 0.991)

Pan et al (2019)9 Cobb angle Radiologist 1 vs CAM 0.868 (0.819 to 0.902)

Radiologist 2 vs CAM 0.812 (0.723 to 0.868)

Weng et al (2019)12 SVA ResUNet vs rater 0.989 (0.984 to 0.993)

ResUNet vs rater 2 0.946 (0.920 to 0.963)

ResUNet vs rater 3 0.993 (0.989 to 0.995)

Korez et al (2020)13 SS RetineNet and U-Net DL tools vs spine surgeon using SurgiMap Spine software 0.73 (N/R)

PT 0.90 (N/R)

ST 0.95 (N/R)

PI 0.81 (N/R)

SSA 0.71 (N/R)

*From publications comparing radiologist with machine learning algorithms.
CAM, computer-aided method; CI, confidence interval; CNN, convolutional neural network; DNN, deep neural network; ICC, intraclass correlation 
coefficient; N/R, not reported; PI, pelvic incidence; PT, pelvic tilt; SS, sacral slope; SSA, spinosacral angle; ST, spinal tilt; SVA, sagittal vertebral axis.
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Staartjes et al20 examined patient satisfaction in 422 patients 
after lumbar discectomy, using patient-reported outcome 
measures (PROMs). Improvement in the severity of leg pain was 
the main outcome measure. The minimal clinically important 
difference (MCID) was set at an improvement of more than 
30% above baseline. ANN proved to be a better predictor of 
outcome than LR, with an AUC of 0.87 compared with 0.78. 
ANN was also more accurate, sensitive, and specific than LR 
(accuracy ANN 85%, LR 68%; sensitivity ANN 85%, LR 55%; 
specificity ANN 85%, LR 77%). It was noted that ANN also 
outperformed LR in terms of PPV (90% vs 60%) and NPV 
(79% vs 73%). Similar findings were reported for secondary 
outcomes, back pain, and functional disability.20

Matis et al21 evaluated the predictive accuracy of ANN and 
LR for patient satisfaction in lumbar disc herniation. ANN 
marginally outperformed LR with an AUC of 0.985 compared 
to 0.97. ANN was also slightly more accurate and sensitive 
than LR with an accuracy rate of 96% and sensitivity of 98% 
compared with 94% and 96% for LR. ANN also marginally 
outperformed LR for specificity, (94% vs 92%), PPV (98% vs 
97%), and NPV (94% vs 89%).

A complete summary of findings for all studies are reported 
in Supplementary Table i.

These studies show that there is great potential for ML 
models to help clinicians to optimize the management of 
surgical patients. Nevertheless, there is considerable scope 
for improvement.
Limitations of the clinical application of AI and ML. 
Regulation and sharing of stored patient information with AI 
providers remains a concern. No specific guidelines current-
ly exist for the regulation of AI under the Health Insurance 
Portability and Accountability Act23 (HIPAA). However, the 
European Commission published a white paper in 2020 which 
addressed this issue with the aim of achieving harmonization 
with the General Data Protection Regulation (GDPR) and 
Equality regulations in the coming years.24

For academic purposes, oversight is provided in a framework 
based on the Transparent Reporting of a Multivariate Predic-
tion Model for Individual Prognosis or Diagnosis (TRIPOD) 
reporting guidelines for diagnostic and prognostic studies 
involving AI and ML (TRIPOD-AI).25 This framework goes a 
long way to providing assurance that such studies can be repli-
cated, and their conclusions tested outside the originator insti-
tution. Such a framework negates the worries about potential 
publication bias in ML studies noted by Buchlak et al.26

Although such frameworks have led to significant improve-
ments, existing studies cannot often be compared with the 
current gold standard in practice. The interpretation, reli-
ability, and overall level of evidence of certain studies about 
ANN is questionable. Emphasis must be placed on improving 
the reporting of results. With regards to the performance of 
novel algorithms, AUROC is often favoured as a performance 
metric. However, its efficacy has been challenged for unbal-
anced datasets.27 Furthermore, a single performance metric 
may not be sufficient to convey the attributes and ability 
of novel algorithms, and researchers should strive to report 
additional metrics, such as accuracy, sensitivity, specificity, 
and PPVs and NPVs.

Other potential inherent biases in ML have raised concerns 
that these technologies can make widespread systematic analyt-
ical mistakes.20 For example, certain algorithms may not have the 
ability to discriminate confounders, particularly in a diagnostic 
sense. A study by Winkler et al28 found that images with surgical 
skin markings had increased melanoma probability scores 
(sensitivity 100% vs 95.7%) and reduced specificity (45.8% vs 
84.1%). Comparable AUROCs were also lower (0.922 vs 0.969) 
for images with skin markings. Thus, the presence of surgical 
skin markings was shown to falsely increase the melanoma 
probability score derived by the DL model. Other examples are 
training datasets with predominantly one specific demographic, 
whether it be age, sex, or ethnicity. Such biases divide opinion 
between those who favour the use of multicentre datasets that 
contain large numbers of patients from multiple hospitals and 
surgeons, and those arguing for centre-specific datasets. Staartjes 
et al20 used a single-centre, single surgeon dataset of 422 patients 
to provide a coherent input to the model, which contrasts with 
the variability in patient demographics, surgical techniques, 
and selection criteria of a multicentre dataset. However, using 
multicentre data for training could expedite the development of 
an ANN model during a period of continuous advancements in 
spine surgery, allowing ML models to remain valid. Addition-
ally, the speed of change in rapidly developing specialties could 
be an obstacle to the development of accurate ANN models. 
The need for large consistent datasets to train ML models may 
require retrospective collection of training data for an extensive 
period. During those years, advancements in surgical practice 
may occur, thereby rendering obsolete prediction models trained 
on historical data. Thus, a further important focus for future 
research will be on whether personalized prediction models can 
be created in a time-efficient manner, by either mechanism.

It remains to be understood which method would lead to 
improved generalizability, although one may assume the 
former is preferable. To date, generalization of novel algo-
rithms has proven difficult, as indicated in a study by Hwang 
et al,29 whose objective was to employ a DL model to detect 
abnormal chest radiographs. In this study of 54,221 radio-
graphs, specificity was reported to vary considerably at a 
fixed operating point (0.566 to 1.000) across five indepen-
dent datasets, highlighting the struggle to achieve reliability 
and reproducibility. Therefore, perhaps external validation on 
datasets from institutions other than those used for training is 
required to improve generalizability.
Implementation of neural networks into clinical practice. 
Internal discussion must determine whether an institution wish-
es to develop a novel algorithm and model for a particular pur-
pose, or employ one already reported in the literature. This can 
be influenced by several factors relating to accessible resourc-
es. For example, institutions may not have sufficient personnel 
within their listed staff who are experienced in developing and 
maintaining ANN models. If this is not the case, institutions that 
wish to design and implement ANN models may need addition-
al external expertise, often in the form of contracted experts or 
consultants. Through multidisciplinary discussion, researchers 
can develop a primary outcome (termed outcome X) and distin-
guish how many input variables they wish to incorporate (i.e. 
risk factors for developing X).
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However, the feasibility of training an ANN model can be a 
barrier to successful design and implementation of the model. 
A major challenge to the adoption and translation of ML algo-
rithms into clinical practice is accessibility of the data required 
for training. In traditional healthcare systems, data for a single 
patient may be stored in various locations, such as analogue 
medical records, digital imaging systems, and pathology 
archives. This can create significant difficulty and delay in 
collating the data needed to train a model. Electronic health 
records, often used by more modern healthcare systems, are not 
without certain difficulties and limitations, as discussed exten-
sively by Hersh et al.30 Therefore, institutions must establish 
whether they have the necessary labour resources to collect the 
data needed to train a model.

These difficulties can often be overcome by implementing 
a model already in existence which has proven efficacy. 
However, there may be an issue relating to generalizability. 
As a result, institutions are advised to validate adopted algo-
rithms on their own patient populations and compare their 
results against the current standard in practice, preferably in 
a prospective manner. Additionally, institutions are encour-
aged to adhere with TRIPOD guidelines. These will provide 
guidance on model development and external validation.31 By 
doing so, institutions should then be confident to introduce 
ANN into clinical practice.

The findings from the studies highlighted in this review 
show the potential applications of neural network models in 
spinal surgery. Diagnostically, they can be sensitive and accu-
rate tools for measurement that could help to reduce workload 
and the time to diagnosis for radiological imaging. Prognos-
tically, they have been shown to be capable of predicting 
surgical outcomes and patient satisfaction. However, more 
robust accurate models and methods of training are needed 
to provide a greater understanding of whether multicentre 
dataset prediction models or models individualized to specific 
demographics are more likely to provide accurate predictions. 
Such evolution will, in all likelihood, contribute significantly 
to the process of continuous improvement in spinal care that 
has gathered pace over past decades.

Take home message
- - There is potential for the diagnostic and prognostic capacity 

of artificial neural networks in clinical practice; however, more 
robust models with scrupulous validation are needed.
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